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Abstract. A rule for environmentally dependent modification of the neuronal state is examined. Under

the rule, the neuron selects a trigger feature that matches either a particular pattern in the stimulus set,

or the most common pattern component, depending on a certain parameter. Thus a neuron may

evolve to respond to its stimulus environment in one of two capacities, namely specification or

generalization. Neurons of the former variety are labelled "S-cells; and those of the latter, "G-cells. In

the model, synaptic modification is modulated by two postsynaptic mechanisms, which act

antagonistically to strengthen or weaken the synaptic connectivitics. The functional dependence of

these mechanisms on the postsynaptic activity is shown to determine whether the neuron acts as an S-

cell or a G-ccll. A circuit is proposed for a module that consists of a G-cell and several S-cells sharing

a common set of inputs. By inhibiting the G-cells, the S-cell acts as a contrast-enhancing element,

increasing their specificities for individual patterns in the stimulus set. The output from the module is

a recoded representation of the environment with respect to its general and distinctive features.
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1. [Itroductlai

1.1. Triger features

Barlow (1972) expresses the importance of single neuron response characteristics as per-

ceptual substrates. He stresses the role of a sensory neuron's 'trigger features" which, according

to that papers third proposition, "art matched to redundant patterns of stimulation by experi-

" ence as well as by developmental processes.! The present paper is concerned with the following

question: To which of the redundant patterns in a neuron's stimulus environment is its trigger

feature(s) matched, and how (in a mathematical sense) can this match evolve with experience?

Several theories describe the evolution of neuronal trigger features (e.g. von der Malsburg,

1973 ; Perez et al., 1975 ; Grossberg, 1976 ; Amari and Takeuchi, 1978). In the present paper, a

scheme for neuronal plasticity is put forward in which neurons dynamically adapt to their indi-

vidual stimulus environments such that some tune to particular patteras (specification) while

others tune to the most prevalent pattern component (generalization). The model extends the

theory of Bienenstock et al. (1982) for development of orientation selectivity in visual cortex to

yield either maximization or minimization of selectivity, depending on the relation between

two antagonistic mechanisms that postsynaptically modulate synaptic plasticity. If the func-

tions arc of the same form, this relation can be expressed in terms of a (fixed) neuronal parame-

er. By developing response characteristics to have low selectivity, the neuron generalizes by

iatching its trigger feature to the component most common among the stimuli in its environ-

ment, that component being a redundant pattern of stimulation as in Barlow's third dogma. On

tbhe other hand, by pursuing a highly specific response function, the trigger feature evolves to

.ch a particular pattern, while ignoring a maximally broad range of the remainder of the

stimulus set. Thus some neurons pursue common features and some pursue distinctive features

in the environment.

1Badow's papei consists of five speculative pfopositions (dogmas) which he supports with pewuasve argumeints
and substantial expefimental data.

. ... .......... " .
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1.2. Physiological evidence

The development of highly selective neurons in mammalian visual cortex (particularly in

cats and monkeys) has been extensively studied under variously restrictive rearing conditions

and has been shown to depend critically on the visual environment (for a comprehensive review

of the literature, see Movshon and Van Sluyters, 1981). The stimulus parameters over which

selectivity has been shown to develop have generally been orientation and spatial frequency.

However Gross et al. (1972) found neurons in the pre4triate cortex of macaque monkeys tuned

to features of higher specificity such as hands and faces.

Cortical neurons exhibiting low or zero selectivity in the orientation domain have also

been observed. These are particularly common in layer 4 of monkey striate cortex (Hubel and

Wiesel, 1977). If such neurons are present in the cat, they are certainly less common. Kelly

and van Essen (1974) report symmetric receptive fields in some units but classify them as geni-

culate affcrents. Palmer and Davis (1981), on the other hand, give evidence that nonselective

cortical neurons exist in cat visual cortex, but are rare.2

. The model

This section includes the formal description of the model and some analysis of its struc-

ture. No argument is presented in this paper to motivate the mathematics. Interested readers

-id consult Cooper ct al (1979) and Bienenstock et a (1982). Vector quantities appear in

.Ad type and are specified by superscripts. Components of vectors are not in boldface and are

identified by subscripts. Let d Q) label the i-th stimulus component, a measure of the activity

of the i-th affcrent at time t. Corrcsponding to each component is a synapse of strength

m,(t). There ar N components to both d and m, hence they ar both vectors in N-

space, or sinopse space. A stimulus enviromnent refers to a probability density for d in N-space.

2In this study of single neuron response properties in cortc:, 13 units from a total of 257 were found not to be

o@ientation4dective. On the basis of their response properties. 9 were thought to be geniculocortical (IGN Y-celt)
afferents. Palmer and Davis conclude that the ranaing four are nonselective cortical neurons.

I%
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2.1. The traster functim

Let the net integrated depolarization x(t) be the thresholded linear expression:

x(t) = max (O m(t)dt) ((1)t

The response frequency c (x) of the neuron is thought to be increasing in x and linear in some

region, but with nonlinearities for x low (the firing threshold) and x high (maimum firing

rate). Since x rather than c is used in the learning rule, the precise form of c(x) is not impor-

tant. The input-output relation is determined by the synaptic weights mi, hence the input

activity levels di are termed presynaptic and the output activity x (or c) is termed postsynaphic.

A neuronal variable, q(t), is involved in the synaptic plasticity rule and will be defined

later. Together, the synapse vector m and the value q(t) make up the newond state (req), an

(N+l)-dimensional quantity. For simplicity, the components mi function as 'ideal synapses

(Nass and Cooper, 1975) capable of changing sign. A treatment is given in the discussion (sec-

tion 4.2.2) in which the signs of the synaptic weights does not change.

2.2. The modlflcatlon rule

The rule for neuronal plasticity describes the changes in m and q as time derivatives:

mi(t) =+(x,q)d1 (t) (2a)

where (x,q) - fr2(x)-qal(x) (2c)

The postsynaptic3 modulatory function ,(xq) is given in terms of q and two continuous,

monotone increasing functions of x: a0.(x), and a 2(x). To complete the rule, the following

restrictions are imposed. The function + is subject to the condition 4(Oq)=0 for all q>0.

Consequently, the two functions a, and 0"2 must each vanish for x=0. Also, for any fixed

value q>0, a I and 02 are to be such that there exist at most one other value x>0 at which

3 Rules for synaptic modification are often expreuud a the product of a function of the pregynaptic activity
and a function of the postsynaptic activity. This approach dates back to Thorudike's (1913) law of Use and Ifebb's
(1949) "Neurophruiological Postulate, but has not been aperimentally verified until recently (Levy and Steward.
1979; Rauscbecker and Singer, 1961; Singer, 1962; Singer and Rauschcke, 192).
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d(xq)=O. The parameter specifies a rate constant for q relative to Ai,. In the simulations

below, p has been set to unity.

2.1. Prallel modiflcation

Consider the above equation (2a) for ia and note that it is linear in the stimulus d(t).

e The modification to m induced by a given stimulus is thus parallel or antiparallel to d. Of all

possible input stimuli of a giwecn magnitude, the response to the one in the direction of that

stimulus d is most greatly affected by the change in m. Therefore parallel modification (linear-

ity of iii in d) has the following behavioral implication for a system: learning induced by a par-

ticular stimulus more greatly influences future responses to that stimulus than to others of the same

magnitude.

K The sign of the function 4 determines whether the synapses get stronger or weaker - i.e.

whether s is parallel or antiparallel to d. For a given value of q, has at most two zeros in x,

one of them being x =0. Thus the sign of 4 can vary over x in four ways, depending on the

value of q. Two of these are illustrated in Figure la in which for q sufficiently small or large

and x > 0, 4d is respectively positive or negative definite. For intermediate values of q, + is first

positive and then negative (Figure 1b) or vice versa (Figure ic). These last two situations can

be labelled by the sign of the partial derivative +o, at the point x =O(q)>0 where o(0(q),q)=0.

That sign depends strictly on the forms of or1(x) and ar2(x) and hence only one of these two

cases is possible for a given neuron.

2.2.2. Restrictions on a0I and o2

As shown in Figure 1, cross sections of 4(xq) at constant q can evolve in just two ways

as q increases from 0. For q less than or equal to a certain value q., + is always positive for

*fp 0, and for q:-qb, 46 is always negative. Thus a function 0(q) can be defined on the interval

qE(qqj,) such that x=0(q)>0 is the second zero of 4 - i.e. +(0(q),q)=O. The inverse func-

tion q =0-1(x) is given by.

I.1
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o 1t(x).- 2,(X)
((x)3)

The following theorem establishes a condition on al and a2 that allows 40(x,q) at most one

zero on the domain x > 0 for any fixed value of q.

Theorem. For any fixed positive value of q, the function 4(zq)mar,(z)-qe 1 (•). where ur(•) and e 2 (•) are positive

and differentiable on the domain z>O, has at most one zero for ,z>O if the Wronskian W(aA'(z) . 2(Z)) is either

always positive or always negative for x > 0.

Proqf. For a fixed positive value of q. define a set of values zi on the domain x > 0 such that 4( .q)--O for all I. If

the sign of the partial derivative 4, (x "zj) is constant for all values of z > 0, then there can only be one zero of 4 in

W(zl
that domain. Note that q--Azj(x)/ 1 (j) for all I. 6,(z- ) is shown to be equal to

or2

,I,,( (v)) - 2--a,

a'1 a' 1  
r
2 I

r I oa2 I

hence thb sign of 46,(z 0(q)) is the same as the sign of W (z). This completes the proof.

The (constant) sign of W (x) will be shown to determine the feature abstracting property

of the neuron. If W(z) is always positive, the neuron generalizes (a "G-cell') and if it is nega-

tive the neuron tunes to a specific stimulus (an 'S-cell'). This is demonstrated in Section 3.

The sign of 0"(q) is constant for dl values of qE(q,,q,) and is also the same as those of W(x)

and 4,(x=O(q)). This is because the inverse function 0-1(x) is also monotone increasing or

decreasing:

dO Qx = r2-er-ele 2  W *(O q)
dx a1 21 ( 2

In addition to the signs of 4, W(x), and 01(q), there is a fourth quantity providing an

equivalent condition. Those three quantities are positive if and only if the logarithmic

0ii-
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derivative (LD) of at (x) is greater than the LD of o2 (z) for Rl x >0, and negativC if and only

-if the reverse condition holds. Thus the LD of one function is required to be consistently

higher than the other. The feature abstracting property of the neuron depends only on which

LD is greater.

2..3. Some allowed functions

Now consider functions o, and o 2 that can be expressed as a common function, only

with different scale parameters:

cat(x) W )ir (6)
T11i

The sign of the Wronskian is now related to a functional of a(x) by the following corollary.

Note that the amplitude parameters lt and lI. 2 are not important here since neither the sign of

4 the Wronskian nor the logarithmic derivatives depend on them.

Corolay. The function 4(x .q)- o(z/-q)-qcr(z/-qj) has at most one zero for z >0 if L [r(x)]> 0 for all x> 0. where

L[w(z)J(&'(z)) 2-z(x)cr'(z)-(z)e(x). If this condition holds, then the sip of the Wronskian

W (* (z/y),- (x /Y)) equals sgn(w 2- .

Proof. If the LD of a(x/q) is monotone increasing in -q, then the LD for the sigma function with a higher value of

-q will always be Venter. Thus a derivative is taken with respect to -q and the sign of the result is sen to be equal to

the sign of L [r (x)]:

A.. I =, ( i I -"( , z)) 2 7

The case for negative definite L (z) (for which the signs are opposite) can be ruled out by considering the behavior of

. . "for q =p aY' / in the neighborhood of z --0. In this case. 4 has the same sign as f(z / ")-u(z /h. [ence, as z

increases from zero, # takes on the sign opposite to q2-wj. Note that for 0,< <9(q), the sign of # must be oppo-

site to that of the Wronskian. Therefore only the case in which the LD increases wich -q applies, so the condition

L(z)> 0 is sufficient and the signs of the Wronskian etc. are equal to sgn(ii%"J0.

4
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Certain functions used to approximate the reiation between net somatic depolarization

and neuronal firing rate (i.e. c(x)) satisfy this corollary. Among such functions are ln(l+x)

(Agin, 1964) and sigmoidal functions of the form:

. r(x)=-- p1 (8)
X'+1

which approximate typical bounded threshold functions like that measured by Chapman (1966)

in the crab and by Creutzfelt et al. (1970) in cat retinal ganglion cells. Hence either ar1 or a2

might be related to the firing rate c.

For the case where ar, and Cr2 are of the same form a(x/-), the sign of the Wronskian is

seen to depend on which function has the greater scale factor 1 for the argument. Thus

sgn(W(x))=sgn('n2-t), and so for 2>111 the neuron tunes to a particular stimulus in its

stimulus environment, and for 12<11 the neuron is driven towards generalization.

2.3. Stability

Trajectories are drawn in the m -q plane for a one-synapse neuron receiving a constant

stimulus d 0= 1 (Figure 2). It can be seen that the neuron is always driven to a finite final state.

Note that if the initial value of q is too large the final value of m will be zero (the neuron loses

* all responsivity).' The final states of the system are not perturbed by small amounts of signal

noise on the average. This is because the expected value of (in ,q) is along a trajectory. Con-

sider noise uniform on the interval [-a,a]:

•". [ (d0+f ]
--1- j+.4,1 (mrdo.q,)mOe Ie (9)

E[1 2a _Jmo(do+.E)(9

S- - 0 (m Od O'q O)m O mo
3 0"

Hence perturbations from equilibrium states are, on the average, driven back to the same

equilibrium point in the m-i plane.

4Hence it may be advantageous to ssume that q(1 -)--. It should be noted however that this condition is
not sufficient for multi-pattern environments. Simulations indicate that the initial values of the synaptic wights
miv be large in order to guarantee a nontrivial final state.

* . - . . . .
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3. Feature abstraction

The dependence of a neuron's feature abstraction properties (specification or generaliza-

tion) on the sign of the Wronskian has already been mentioned. The degree of selectivity and

the quality of feature abstraction depend critically upon the structure of the stimulus environ-

ment in N-space. Therefore selectivity is precisely (albeit somewhat arbitrarily) defined and dis-

cussed in this section for a variety of pattern sets and the feature abstraction properties of the

model are analyzed.

3.1. Stimulus environments and selectivity

It is important to emphasize the role of the neuron's stimulus environment as a context

for both the development and testing of neuronal response characteristics. Since each stimulus

can be represented in the same N-dimensional space as the synaptic state m, a stimulus environ-

ment can be thought of as a prubability density function on that space. Under a given learning

rule, the locus of stable (final) states e(t- ") is determined by the stimulus environment.

Ncuronal selectivity is measured with respect to a test environment, a set of stimuli which

one must be careful to distinguish from the learning enironment. While the neuronal state may

undergo a measurable (adaptive) change under the influence of the learning environment

(indeed this is often the whole point), the test environment is used to perform a measure on

the state. Even so, in the analysis of this model the learning environment is virtually identical

(except for the addition of a random noise term) to the test environment. Also, the inevitable

influence of the measurement on the state itself is idealized to be nil.

A neuronal response function c(mE) can be calculated over any pattern set E for a

given synaptLc staie m. A piccisc definition of selectivity for a general stimulus denbit) func-

tion P (dE) was given by Bienenstock (1980). This can be paraphrased:

f c (m,E)P (dE)

S(mE) = I- = -(10)
Cmz Cm

vhere cn-,-- max(c (m.E))
4 5

-S
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*.. Note that S (mE) E [0,1) with zero indicating a uniform response across E and unity being an

° idealized (zero-width) response peak. The function is illustrated (Figure 3) for a stimulus

environment that is characterized in terms of a single parameter.

- For a given environment E, the selectivity S (m,E) is a scalar function of the state m. In

Figure 4, lines of constant selectivity are plotted for an environment consisting of two discrete

patterns dl and d2. Restrictions on the synapses, such as the sign of m,, may prevent a cell

from realizing its optimal state. In such cases, simulations have indicated that the neuronal

state is driven to the limiting boundary.

3.2. Discrete pattern sets

3.2.1. Two patterns In two dimensions

This is the simplest case in which the feature abstraction properties of the model can be

analyzed. The neuronal state space is illustrated in Figures 5a and 5b. For each pattern there

exist two surfaces at which 4P=0. One surface is the plane md=O and the other surface

represents the relation md=0(q). At the intersections of the +(m-dlq)=0 surfaces and the

,4(m-d2,q)=0 surfaces are equilibrium states where +,=0 for both patterns.

There are four distinct loci of equilibrium states. One consists of the q-axis (m =0), two

represent maximally selective states (one for each pattern), and one is made up of states having

minimum (zero) selectivity. In the case where the Wronskian is positive, only points belonging

'o the maximally selective equilibrium locus are stable and if the Wronskian is negative only

the minimally selective (nontrivial) equilibrium points is stable.

For a given synaptic vector m, 4P is positive for q<0-1(m'd) and q<O-'(md2) - i.e.

below both surfaces m'd' =0(q) (cf Figure 2). Above the two surfaces, 41 is negative. Hence in

* L.hcase the neuronal state is driven toward those surfaces and eventually ends up bctween

t.em, at their intersection (zero selectivity), or on the q-axis (m = 0). These eases are con.

sidered below.

,-.
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Case 1: -'(mdt)>q>0-X(m-d 2). The argument for this case can also be applied to the

case where dl and d2 are reversed. Here +(m-d1 )> 0 and ,+(m'd)< 0, so the response mrd! tends

to increase and the response m'd 2 tends to decrease. This drives the state toward minimum

selectivity (i.e. toward m'd'=m'd) if md'< md2 , and toward maximum selectivity (in this case

" toward m'd 2 =0) if md'> md 2 . Therefore the feature abstraction property of the neuron

depends on the sign of 01(q) (and hence on the signs of W (x) and ,(x =O(q)) as shown earlier

in (5)).

Case 2: m'd1=m'd 2 =0(q). In this case the neuron is in a minimum selectivity equilibrium

state and so the stability of the state must be considered. Any noise in the stimulus, response,

or plasticity function will perturb the state from equilibrium. By the above arguments it is

seen that an S-cell will be driven away from this locus and a G-cell back toward it.

Case 3: m-d=m'd2=0 (the q-axis). The q-axis is a locus of trivial (zero response to all

stimuli) states which is stable for qa 0-(x =0). However it is never reached (again see Figure

2) if the initial value of q is small (q(t =0) << 0(x -0)).

m-plane projections of numerically evaluated trajectories are shown in Figure 6 for 2-

pattern environments.

3.2.2. Linear Independence

A linearly independent set of K stimulus patterns presented to a neuron stochastically is

treated as an ideal case, since the model can function perfectly in this situation. If each pat-

tern is presented with non-zero probability, then neurons of both types will asymptotically

approach their optimal selcctivitics: zero for G-cells and 1-1/K (the maximum) for S-cells.

While this statement has not been proven, it is strongly supported by computer simtlation.

These ideal final states are possible for a linearly independent stimulus environment and on/y

ar ,uch an environment. This can be seen by considering the synapse space. The conditions

tud=0 for K -1 patterns and m-d> 0 for the last one (maximum selectivity) can only be simul-

taneously satisfied only if all K patterns are independent. Similarly, linear independence is

required to reach zero selectivity nontrivially - i.e. to satisfy the condition that m'd be

4 . . . -
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constant for all environmental stimuli d.

An important feature of the model can be seen in such an environment (and proven for 2

patterns), namely that the neurons (asymptotically) acheive optimal selectivity even if the pat-

terns are nor presented with uniform probability. This is perhaps more impressive with respect to

the generalizing neurons. A scheme whereby the synapses simply average the stimuli over time

will extract the most common feature components according to the probability distribution.

However, in this model the most common feature component among the individual stimuli is

extracted.

3.2.3. Linear dependence

In general, the above 'ideal' final states cannot be do not exist for an environment in

which the stimuli are not independent. Nevertheless, both cell types are driven toward optimal

states under this condition. For S-cells, a high selectivity is attained except under overwhelm-

ing circumstances, such as the situation in which all stimulus patterns differ only in their mag-

nitude.5 If all stimulus components are assumed to be positive, it is even difficult to design an

environment under which the G-cell cannot reach a low-selectivity state. This is because for

patterns having little in common (and therefore not very "generalizable'), all the synapses can

simply grow very large so that just about any stimulus evokes a high response. The principal

danger in this situation is overgeneralization: ideally, a G-cell will only respond with low selec-

tivity as measured across its stimulus environment.

3.3. Continuous pattern sets

Certainly not all stimulus sets are discrete. For example, physical stimulus feature dimen-

sions are almost all continuous since they are intensity measures. In this section cottinuc'us

stimulus environments that have a periodic dependence on one or two parameters are dis-

aSuch pattern sets can be thought of as a single pattern, in that the informational content of a stimulus is
contained in the relgive vdams of the components. Thus the direction of a vector (stimulus or synaptic)
is associated with information and the magnitude with intensity. Gati and Tversky (192) relate these to
the qualitative and *quantitative aspects of a stimulus. Note that to incorporate this notion into the
present model would require that the operant definition of selectivity be modified.

.%
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cussed. This is done as an approximation to a visual environment consisting of oriented con-

trast edges where stimulus orienion is the varying parameter. Because they have been widely

used to measure the selectivity properties of neurons in striate cortex, such environments are

useful for comparison of the model with experiment.

33.1. Periodicity In one parameter

The behavior of the model in an environment varying periodically in a single parameter

provides a good illustration of how the model functions. Such environments map onto closed

loops in N-space. Here these are assumed to be "reasonably' convex so that if two patterns are

close in the stimulus space, then they are also close in terms of the environmental parameter

(the converse holds for a continuous environment by definition). The principle of parallel

modification operates in such an environment such that as the various patterns stimulate the

cell they have the following cumulative effect. The selectivity-maximization property of the S-

cell functions by "encouragingW patterns that evoke responses greater than 0(q) and "discourag-

ing patterns that evoke smaller responses (upper part of Figure 7). As q varies according to

(2), the threshold and the response converge such that some responss lie above the threshold

* and others below. The neuronal response curve then becomes 'separated' (i.e. the difference

between the minimum and maximum response increases) about the threshold 0(q). In the

-- wer part of Figure 7, the reverse process is seen to drive the response curve toward low selec-

* ivity.

3.3.2. Periodicity In two parameters

A pattern set periodic in two independent parameters has a more complex structure. The

environmental topology progresses from a closed loop to a torus with the dependence on an

additional parameter. The behavior of the model has not been treated analytically, but nonri-

gorous results have been obtained by numerical methods (Figure 8). These simulations indicate

that the response surface of a G-cell becomes fiat and that of an S-cell becomes peaked - i.e.

the cell types respectively seek minimum and maximum selectivity over both parameters.

.6 - - - - . . . . .- . .• - . . . . - . - . . . , . . . - . , - . . ... ' ' - . - .% % %
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4. Discussion

4.1. q as a time average overx(I)

This model is an extension of the Bienenstock et aL. (1982) theory for selectivity maximi-

zation. In that theory the function + is postulated to be a function of the instantaneous

response c and the mean response F. For a given value of F, + is negative for c below a cer-

tain threshold value 0 and positive for c > 0, where 0 depends on F. The system is stable for

functions O(F) that increase in a "faster-than-lineare fashion with F (e.g. O(F)=' ;p > 1).

A more direct extension of that theory to selectivity minimization is possible (Munro,

1983), by inverting the requirements on the sign of + and on the form of 0 so that it is

Wslower-than-linear in F (ic. p< 1). Hence the important mathematical conditions on the

model appear to be that + change sign once as a function of the response and that the value 0

vary temporally with the response according to a function which must satisfy certain condi-

tions. The feature abstracting property of a given neuron then relies on the signs of two

parameters, namely *+ (c= 0(F)) and p-1. Of the four possible combinations, one gives

specification, one gives generalization, and the others do not converge to stable final states.

Hence the following condition is imperative: sgn(4, (c -0(F)) = sgn( -1). The interdepen-

dcncc of these two parameters is not so artificial in the approach taken by the present paper.

It has been shown that ,(x =0(q)) and 01(q) are related (5). The success of the model

and its similarity to the theory of nicnenstock et aL. depend on q(t) playing the role of F. By

integrating (2b), one can see that q, like F, is a time average of a measure of the postsynaptic

activity:

q(t) = q0e + fe 2(x())x(t)dt
0

Note that the first term decays with time.

.".
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4.2. Visual cortex

4.±1. Simulation of experiments

Since this model is a direct descendant of the theory of Bienenstock et al. (1982) for

selectivity maximization in visual cortex (see Section 4.1), it comes as no surprise that the

scheme for the S-cell explains the same body of physiological data. Computer simulation indi-

cates that the two theories behave nearly identically, from a qualitative standpoint, in several

variously manipulated visual environments (e.g. normal rearing, monocular and binocular

deprivation, and reverse suture). However results differ for simulation of the artificial stra-

bismus paradigm. A toroidal environment (section 3.3.2) is used to describe strabismic input.

Recall that the S-cell tunes independently with respect to both parameters - i.e. it develops

high specificity in both eyes, but not necessarily to a common pattern. In the Bienenstock et

al. formulation, such an environment drives a neuron to a monocular state (Munro, 1963).

That is, tuning is accomplishcd with respect to one of the two parameters. These results are

purely empirical and have not been derived, so it is conceivable that the behavior of either or

both models in a noncorrelatcd binocular pattern space depends on some parameter(s). Data

from Hubel and Wiescl (1965) suggest that strabismic rearing results in fewer binocular cells,

and thus supports the schcme of Bienenstock et al. as a model for visual cortex neurons. On

the other hand, Blakemore and Van Sluyters (1974) report the existence of binocular neurons

with a high orientation disparity between the two eyes.

4.2.2. Contrast enhancement

It is generally accepted that the projection from the principal visual input (the lateral gen-

iculate nucleus of the thalamus) to striate cortex is overwhelmingly, and perhaps exclusively,

excitatory. Inhibitory influence is therefore thought to be mediated by cortical interneurons.

Figure 9 presents a scheme which is in accordance with these observations. A set of neighbor-

ing neurons is shown that share a common set of excitatory afferent fibers. A variety of S-cells

serve to tune to a corresponding selection of environmental stimuli, whereas fewer G-cells ar

.oI
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required (perhaps only one).

By inhibiting all the S-cells in this "cluster, the G-cell can increase their selectivities.

Inhibition by a G-cell raises the excitation threshold of an S-cell uniformly in as much as the

response of the G-cell is uniform across the environment. A similar circuit has been proposed

by Grossberg (1976). He proposes a scheme in which the inhibitory interneuron receives inputs

* from the surrounding feature detectors. The resulting response is of minimal selectivity to the

extent that the input weights are equal.

Secondary evidence for such a circuit is found in the visual cortex of macaque. Hubel

and Livirgstone (1982) and Tootell et al. (1982) have found periodic clusters of non-selective

cells centered in ocular dominance columns. Also, Hendrickson et at. (1981) report a similar

distribution for the enzyme glutamic acid decarboxylase (GAD) which synthesizes the inhibi-

tory neurotransmitter GABA. They have found localized GAD-rich areas that run parallel to

ocular dominance columns. An examination of the fine structure of the axon terminals of

low-selectivity neurons would directly test the hypothesis that they are inhibitory.

4.3. System organizatlm

A conjecture can now be made explicit in terms of four neuronal types, defined according

to their optimal selectivities (minimum or maximum) and their influence on other neurons

(excitatory or inhibitory), namely that a circuit can be constructc! from these four neuronal

types (S+,S',G ,G) that will evolve to classify any stimulus set in terms of similarities and

differences. That is, such a neural network might self-organize such that a taxonomic represen-

tation of the environment is constructed. This hypothetical network is not easily realized.

The problem is to discover an architecture that provides an appropriate context for each neu-

ron. Since this problem has not been solved, let us consider how it might be approached.

An initial step is to investigate the properties of small local neuron circuits or modules as

Jojcused by several authors including Mountcastle (1978) and Szentagothai (1975). The con-

tu.it enhancement scheme in Figure 9 is a candidate for such a functional unit. The problem

of bo - these modules might be arranged to form larger components must also be eventually

-. . . . . ..::: :: ::::: ::: :::: :::::::: :: ::::::::: ================== ===: i,- : :i
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addressed. At each level the circuits are presumably genetically coded structures, within which

* individual neurons adapt to informational aspects of their respective stimulus environments.

Consider a system organized in a hierarchical fashion, reflecting progressively complex per-

ceptual stages (e.g. sensation - recognition - association cognition ...). It would be a mistake

to assume that these stages lie in a strictly serial path since system processing is certainly paral-

lel to a certain degree. The combined hierarchical/parallel flow of information in the visual sys-

tem has been recently examined by Van Essen and Maunsell (1983) in terms of so-called "func-

tional streams".

The nature of the stimulus environments at successive stages of neural processing prob-

ably becomes increasingly discrete. Shepard and Podgorny (1975) point out that symbolic

stimuli are discretely coded while physical (nonsymbolic) stimuli vary continously along one or

several dimensions: "For, whereas we can continuously shift a color (for example, blue) in

4 brightness, hue, and saturation until it becomes as similar as we wish to any other color (for

example, green), we cannot continuously deform a word 'blue' to another word 'green' without

passing through intermediate configurations that are not words at all." Thus it is expected that

inputs to the higher (more "gnostic') stages are more distinctly separated than early (sensory)

input patterns. Inhibition is a powerful tool for separating patterns (see section 4.2.2) and as

such may play an important role in the formation of discrete (symbolic) representations.

-.
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Figure Captions

Figure 1. Functions qa(x), r2(x), and +(xq) are plotted against x for two values of q (ql<q2) in

three situations.,q a I and cr2 are shown above and + is shown below. a ql< q. ; q2> q&. b Both values

of q in the interval q((q,,qb) for a case where the Wronskian W(crta 2) < 0. c The same for

W(rta,a 2) > 0. (See theorem in text). Note that the sequence of zero crossings for 4+(xql) and

,(x q2) in c is opposite to that in b.

Figure 2. Parabolic trajectories given by dq/dm = 13m, a simulation of a one-synapse neuron receiving

constant input do = 1. Stable equilibrium states are indicated bye. Note that states with q(t =0)< q.

arc driven to nontrivial (m *0) final states. Functions ar, of the form (6) were used for the two cases:

a 12> m 1 and b 712< I I

Figure 3. This response curve illustrates the definition of selectivity given by (10) for a one-parameter

(co) stimulus environment. The domain of w together with the response range (zero to the maximum

M) determine a rectangle. The fraction of this rectangle which does not lie below the response curve is

the selectivity cf the response. (From Bienenstock et al., 1982, with permission)

Figure 4. Lines of constant selectivity for two 2-pattern environmens, which have a maximum

selectivity of 0.5 (1-1/K for K patterns). No:c that there is a line of maAimum s-lectivity orthogonal

to each pattern and that the line of zero selectivity is orthogonal to the difference between the

patterns. a if the two patterns have a common norm, the locus of zero-selectivity lies midway between

the patterns. b if they have different norms, the isoselectivity contours are skewed toward the weaker

stimulus.
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Figure 5. Curved surfaces give loci of nontrivial equilibria with respect to each of the stimuli in the 2-

pattern environment d'=(1,0), d2 =(0,1). Each surface is defined by translating the curved lines in

Figure 2, in the direction orthogonal to the planes in which they lie. Assuming q(t -0) is suifficiently

small, the neuronal state converges to one of the following lci, each defined as the intersection of a

46(mrd'=0) surface and a 4(m'd 2=0) surface. a S-cell: c, or c 2, contours defined by maximally selective

states satisfying md=O for one pattern and q=0- t (m'd) for the other. b G-ccll: c 1,

(r'd'=rd2 =0(q)), a contour consisting of minimally selective states.

Figure 6. m-plane projections of trajectories are shown for the two-pattern environments of Figure_ 4:

common norm - a S-cell: W > 0, b G-cell: W < 0 ; different norms - c S-ceil, d G-cell.

Figure 7. Behavior of the model is shown in an environment that is periodic in one parameter. If the

response generated by a particular stimulus gives a positive value for 4;, then the resulting synaptic

potentiation increases the response function over all patterns. The increase is a maximum for patterns

in the same direction as the stimulus. This illustrates the notion of parallel modification (section

2.2.1). With sufficient exposure to the environment, the response curve thus becomes maximally

selective for WV > 0 (upper figure) or minimally Eclective for W < 0 (lower figure).

Figure 8. An environment that varies periodicaily over two independent parameters drives a initial

random state having the response surface shown in a to tie final state b fir W > 0, and to e tor W < 0.

The stimulus set consisted of 400 patterns in a 20-dimensional space.

I7
Fig, re 9. Contrast enhancement may be a primary task of generalization neurons. Here, several

neurons share a set of afferents and car evolve such that the 4 -cells prefer variou. patterns while the

G-cclls provide inhibition uniformly across the environment, thus suppressing partially excited S-cells.

I
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This circuit Permits S-cells to attain much higher selectivities even with positive semidefinite input

weights. 0 excitatory synapses ;-4q: -inhibitory synapses.
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